單作用氣缸
單作用氣缸只有一腔可輸入壓縮空氣,實現(xiàn)一個方向運動。其活塞桿只能借助外力將其推回;通常借助于彈簧力,膜片張力,重力等。
其原理及結(jié)構(gòu)見下圖
圖:單作用氣缸
1—缸體;2—活塞;3—彈簧;4—活塞桿;
單作用氣缸的點是:
1)僅一端進(排)氣,結(jié)構(gòu)簡單,耗氣量小。
2)用彈簧力或膜片力等復(fù)位,壓縮空氣能量的一部分用于克服彈簧力或膜片張力,因而減小了活塞桿的輸出力。
3)缸內(nèi)安裝彈簧、膜片等,一般行程較短;與相同體積的雙作用氣缸相比,有效行程小一些。
4)氣缸復(fù)位彈簧、膜片的張力均隨變形大小變化,因而活塞桿的輸出力在行進過程中是變化的。
由于以上點,單作用活塞氣缸多用于短行程。其推力及運動速度均要求不高場合,如氣吊、定位和夾緊等裝置上。單作用柱塞缸則不然,可用在長行程、高載荷的場合。
1.2.2雙作用氣缸
雙作用氣缸指兩腔可以分別輸入壓縮空氣,實現(xiàn)雙向運動的氣缸。其結(jié)構(gòu)可分為雙活塞桿式、單活塞桿式、雙活塞式、緩沖式和非緩沖式等。此類氣缸使用。
1)雙活塞桿雙作用氣缸雙活塞桿氣缸有缸體固定和活塞桿固定兩種。其工作原理見圖42.2-3。
缸體固定時,其所帶載荷(如工作臺)與氣缸兩活塞桿連成一體,壓縮空氣依次進入氣缸兩腔(一腔進氣另一腔排氣),活塞桿帶動工作臺左右運動,工作臺運動范圍等于其有效行程s的3倍。安裝所占空間大,一般用于小型設(shè)備上。
活塞桿固定時,為管路連接方便,活塞桿制成空心,缸體與載荷(工作臺)連成一體,壓縮空氣從空心活塞桿的左端或右端進入氣缸兩腔,使缸體帶動工作臺向左或向左運動,工作臺的運動范圍為其有效行程s的2倍。適用于中、大型設(shè)備。
圖42.2-3 雙活塞桿雙作用氣缸
a)缸體固定;b)活塞桿固定
1—缸體;2—工作臺;3—活塞;4—活塞桿;5—機架
雙活塞桿氣缸因兩端活塞桿直徑相等,故活塞兩側(cè)受力面積相等。當(dāng)輸入壓力、流量相同時,其往返運動輸出力及速度均相等。
2)緩沖氣缸對于接近行程末端時速度較高的氣缸,不采取必要措施,活塞就會以很大的力(能量)撞擊端蓋,引起振動和損壞機件。為了使活塞在行程末端運動平穩(wěn),不產(chǎn)生沖擊現(xiàn)象。在氣缸兩端加設(shè)緩沖裝置,一般稱為緩沖氣缸。緩沖氣缸見圖42.2-4,主要由活塞桿1、活塞2、緩沖柱塞3、單向閥5、節(jié)流閥6、端蓋7等組成。其工作原理是:當(dāng)活塞在壓縮空氣推動下向右運動時,缸右腔的氣體經(jīng)柱塞孔4及缸蓋上的氣孔8排出。在活塞運動接近行程末端時,活塞右側(cè)的緩沖柱塞3將柱塞孔4堵死、活塞繼續(xù)向右運動時,封在氣缸右腔內(nèi)的剩余氣體被壓縮,緩慢地通過節(jié)流閥6及氣孔8排出,被壓縮的氣體所產(chǎn)生的壓力能如果與活塞運動所具有的全部能量相平衡,即會取得緩沖效果,使活塞在行程末端運動平穩(wěn),不產(chǎn)生沖擊。調(diào)節(jié)節(jié)流閥6閥口開度的大小,即可控制排氣量的多少,從而決定了被壓縮容積(稱緩沖室)內(nèi)壓力的大小,以調(diào)節(jié)緩沖效果。若令活塞反向運動時,從氣孔8輸入壓縮空氣,可直接頂開單向閥5,推動活塞向左運動。如節(jié)流閥6閥口開度固定,不可調(diào)節(jié),即稱為不可調(diào)緩沖氣缸。
圖42.2-4 緩沖氣缸
1—活塞桿;2—活塞;3—緩沖柱塞;4—柱塞孔;5—單向閥
6—節(jié)流閥;7—端蓋;8—氣孔
氣缸所設(shè)緩沖裝置種類很多,上述只是其中之一,當(dāng)然也可以在氣動回路上采取措施,達到緩沖目的。
1.2.3 組合氣缸
組合氣缸一般指氣缸與液壓缸相組合形成的氣-液阻尼缸、氣-液增壓缸等。*,通常氣缸采用的工作介質(zhì)是壓縮空氣,其點是動作快,但速度不易控制,當(dāng)載荷變化較大時,容易產(chǎn)生“爬行”或“自走”現(xiàn)象;而液壓缸采用的工作介質(zhì)是通常認為不可壓縮的液壓油,其點是動作不如氣缸快,但速度易于控制,當(dāng)載荷變化較大時,采用措施得當(dāng),一般不會產(chǎn)生“爬行”和“自走”現(xiàn)象。把氣缸與液壓缸巧妙組合起來,取長補短,即成為氣動系統(tǒng)中普遍采用的氣-液阻尼缸。
氣-液阻尼缸工作原理見圖42.2-5。實際是氣缸與液壓缸串聯(lián)而成,兩活塞固定在同一活塞桿上。液壓缸不用泵供油,只要充滿油即可,其進出口間裝有液壓單向閥、節(jié)流閥及補油杯。當(dāng)氣缸右端供氣時,氣缸克服載荷帶動液壓缸活塞向左運動(氣缸左端排氣),此時液壓缸左端排油,單向閥關(guān)閉,油只能通過節(jié)流閥流入液壓缸右腔及油杯內(nèi),這時若將節(jié)流閥閥口開大,則液壓缸左腔排油通暢,兩活塞運動速度就快,反之,若將節(jié)流閥閥口關(guān)小,液壓缸左腔排油受阻,兩活塞運動速度會減慢。這樣,調(diào)節(jié)節(jié)流閥開口大小,就能控制活塞的運動速度。可以看出,氣液阻尼缸的輸出力應(yīng)是氣缸中壓縮空氣產(chǎn)生的力(推力或拉力)與液壓缸中油的阻尼力之差。
圖42.2-5 氣-液阻尼缸
1—節(jié)流閥;2—油杯;3—單向閥;4—液壓缸;5—氣缸;6—外載荷
氣-液阻尼缸的類型有多種。
按氣缸與液壓缸的連接形式,可分為串聯(lián)型與并聯(lián)型兩種。前面所述為串聯(lián)型,圖42.2-6為并聯(lián)型氣-液阻尼缸。串聯(lián)型缸體較長;加工與安裝時對同軸度要求較高;有時兩缸間會產(chǎn)生竄氣竄油現(xiàn)象。并聯(lián)型缸體較短、結(jié)構(gòu)緊湊;氣、液缸分置,不會產(chǎn)生竄氣竄油現(xiàn)象;因液壓缸工作壓力可以相當(dāng)高,液壓缸可制成相當(dāng)小的直徑(不必與氣缸等直徑);但因氣、液兩缸安裝在不同軸線上,會產(chǎn)生附加力矩,會增加導(dǎo)軌裝置磨損,也可能產(chǎn)生“爬行”現(xiàn)象。串聯(lián)型氣-液阻尼缸還有液壓缸在前或在后之分,液壓缸在后參見圖42.2-5,液壓缸活塞兩端作用面積不等,工作過程中需要儲油或補油,油杯較大。如將液壓缸放在前面(氣缸在后面),則液壓缸兩端都有活塞桿,兩端作用面積相等,除補充泄漏之外就不存在儲油、補油問題,油杯可以很小。
圖42.2-6 并聯(lián)型氣-液阻尼缸
1—液壓缸;2—氣缸
按調(diào)速性可分為:
1)慢進慢退式;
2)慢進快退式;
3)快進慢進快退式。
其調(diào)速性及應(yīng)用見表42.2-3。
就氣-液阻尼缸的結(jié)構(gòu)而言,尚可分為多種形式:節(jié)流閥、單向閥單獨設(shè)置或裝于缸蓋上;單向閥裝在活塞上(如擋板式單向閥);缸壁上開孔、開溝槽、缸內(nèi)滑柱式、機械浮動聯(lián)結(jié)式、行程閥控制快速趨近式等。活塞上有擋板式單向閥的氣-液阻尼缸見圖42.2-7?;钊蠋в袚醢迨絾蜗蜷y,活塞向右運動時,擋板離開活塞,單向閥打開,液壓缸右腔的油通過活塞上的孔(即擋板單向閥孔)流至左腔,實現(xiàn)快退,用活塞上孔的多少和大小來控制快退時的速度。活塞向左運動時,擋板擋住活塞上的孔,單向閥關(guān)閉,液壓缸左腔的油經(jīng)節(jié)流閥流至右腔(經(jīng)缸外管路)。調(diào)節(jié)節(jié)流閥的開度即可調(diào)節(jié)活塞慢進的速度。其結(jié)構(gòu)較為簡單,制造加工較方便。
圖42.2-8為采用機械浮動聯(lián)接的快速趨近式氣-液阻尼缸原理圖。靠液壓缸活塞桿端部的T形頂塊與氣缸活塞桿端部的拉鉤間有一空行程s1,實現(xiàn)空程快速趨近,然后再帶動液壓缸活塞,通過節(jié)流阻尼,實現(xiàn)慢進。返程時也是先走空行程s1,再與液壓活塞一起運動,通過單向閥,實現(xiàn)快退。
表42.2-3 氣-液阻尼缸調(diào)速性及應(yīng)用
調(diào)速方式 | 結(jié)構(gòu)示意圖 | 性曲線 | 作用原理 | 應(yīng)用 |
雙向節(jié)流調(diào)速 | 在氣-液阻尼缸的回油管路裝設(shè)可調(diào)式節(jié)流閥,使活塞往復(fù)運動的速度可調(diào)并相同 | 適用于空行程及工作行程都較短的場合(s<20mm) |
單向節(jié)流調(diào)速 | 將一單向閥和一節(jié)流閥并聯(lián)在調(diào)速油路中?;钊蛴疫\動時,單向閥關(guān)閉,節(jié)流慢進;活塞向左運動時,單向閥打開,不經(jīng)節(jié)流快退。 | 適用于空行程較短而工作行程較長的場合 |
快速趨近單 向節(jié)流調(diào)速 | 將液壓缸的ƒ點與α點用管路相通,活塞開始向右運動時,右腔油經(jīng)由fgea回路直接流入α端實現(xiàn)快速趨近,當(dāng)活塞移過ƒ點,油只能經(jīng)節(jié)流閥流入α端,實現(xiàn)慢進,活塞向左運動時,單向閥打開,實現(xiàn)快退。 | 由于快速趨近,節(jié)省了空程時間,提高了勞動生產(chǎn)率。是各種機床、設(shè)備zui常用的方式 |
圖42.2-7 活塞上有擋板式單向閥的氣-液阻尼缸
圖42.2-8 浮動聯(lián)接氣-液阻尼缸原理圖
1—氣缸;2—頂絲;3—T形頂塊;4—拉鉤;5—液壓缸
圖42.2-9 是又一種浮動聯(lián)接氣-液阻尼缸。與前者的區(qū)別在于:T形頂塊和拉鉤裝設(shè)位置不同,前者設(shè)置在缸外部。后者設(shè)置在氣缸活塞桿內(nèi),結(jié)構(gòu)緊湊但不易調(diào)整空行程s1(前者調(diào)節(jié)頂絲即可方便調(diào)節(jié)s1的大小)。
1.2.4 殊氣缸
(1)沖擊氣缸
圖42.2-9 浮動聯(lián)接氣-液阻尼缸
沖擊氣缸是把壓縮空氣的能量轉(zhuǎn)化為活塞、活塞桿高速運動的能量,利用此動能去做功。
沖擊氣缸分普通型和快排型兩種。
1)普通型沖擊氣缸普通型沖擊氣缸的結(jié)構(gòu)見圖42.2-10。與普通氣缸相比,此種沖擊氣缸增設(shè)了蓄氣缸1和帶流線型噴氣口4及具有排氣孔3的中蓋2。其工作原理及工作過程可簡述為如下五個階段(見圖42.2-11):
*階段:復(fù)位段。見圖42.2-10和圖42.2-11a,接通氣源,換向閥處復(fù)位狀態(tài),孔A進氣,孔B排氣,活塞5在壓差的作用下,克服密封阻力及運動部件重量而上移,借助活塞上的密封膠墊封住中蓋上的噴氣口4。中蓋和活塞之間的環(huán)形空間C經(jīng)過排氣小孔3與大氣相通。zui后,活塞有桿腔壓力升高至氣源壓力,蓄氣缸內(nèi)壓力降至大氣壓力。
第二階段:儲能段。見圖42.2-10和圖42.2-11b,換向閥換向,B孔進氣充入蓄氣缸腔內(nèi),A孔排氣。由于蓄氣缸腔內(nèi)壓力作用在活塞上的面積只是噴氣口4的面積,它比有桿腔壓力作用在活塞上的面積要小得多,故只有待蓄氣缸內(nèi)壓力上升,有桿腔壓力下降,直到下列力平衡方程成立時,活塞才開始移動。
式中 d——中蓋噴氣口直徑(m);
p30——活塞開始移動瞬時蓄氣缸腔內(nèi)壓力(壓力)(Pa);
p20——活塞開始移動瞬時有桿腔內(nèi)壓力(壓力)(Pa);
G——運動部件(活塞、活塞桿及錘*模具等)所受的重力(N);
D——活塞直徑(m);
d1——活塞桿直徑(m);
Fƒ0——活塞開始移動瞬時的密封摩擦力(N)。
若不計式(42.2-1)中G和Fƒ0項,且令d=d1, ,則當(dāng) |
時,活塞才開始移動。這里的p20、p30均為壓力??梢娀钊_始移動瞬時,蓄氣缸腔與有桿腔的壓力差很大。這一點很明顯地與普通氣缸不同。
圖42.2-10 普通型沖擊氣缸
第三階段:沖擊段?;钊_始移動瞬時,蓄氣缸腔內(nèi)壓力p30可認為已達氣源壓力ps,同時,容積很小的無桿腔(包括環(huán)形空間C)通過排氣孔3與大氣相通,故無桿腔壓力p10等于大氣壓力pa。由于pa/ps大于臨界壓力比0.528,所以活塞開始移動后,在zui小流通截面處(噴氣口與活塞之間的環(huán)形面)為聲速流動,使無桿腔壓力急劇增加,直至與蓄氣缸腔內(nèi)壓力平衡。該平衡壓力略低于氣源壓力。以上可以稱為沖擊段的第I區(qū)段。第I區(qū)段的作用時間極短(只有幾毫秒)。在第I區(qū)段,有桿腔壓力變化很小,故第I區(qū)段末,無桿腔壓力p1(作用在活塞全面積上)比有桿腔壓力p2(作用在活塞桿側(cè)的環(huán)狀面積上)大得多,活塞在這樣大的壓差力作用下,獲得很高的運動加速度,使活塞高速運動,即進行沖擊。在此過程B口仍在進氣,蓄氣缸腔至無桿腔已連通且壓力相等,可認為蓄氣-無桿腔內(nèi)為略帶充氣的絕熱膨脹過程。同時有桿腔排氣孔A通流面積有限,活塞高速沖擊勢必造成有桿腔內(nèi)氣體迅速壓縮(排氣不暢),有桿腔壓力會迅速升高(可能高于氣源壓力)這必將引起活塞減速,直至下降到速度為0。以上可稱為沖擊段的第Ⅱ區(qū)段??烧J為第Ⅱ區(qū)段的有桿腔內(nèi)為邊排氣的絕熱壓縮過程。整個沖擊段時間很短,約幾十毫秒。見圖42.2-11c。
圖42.2-11 普通型沖擊氣缸的工作原理
1— 蓄氣缸;2—中蓋;3—排氣孔;4—噴氣口;5—活塞
第四階段:彈跳段。在沖擊段之后,從能量觀點來說,蓄氣缸腔內(nèi)壓力能轉(zhuǎn)化成活塞動能,而活塞的部分動能又轉(zhuǎn)化成有桿腔的壓力能,結(jié)果造成有桿腔壓力比蓄氣-無桿腔壓力還高,即形成“氣墊”,使活塞產(chǎn)生反向運動,結(jié)果又會使蓄氣-無桿腔壓力增加,且又大于有桿腔壓力。如此便出現(xiàn)活塞在缸體內(nèi)來回往復(fù)運動—即彈跳。直至活塞兩側(cè)壓力差克服不了活塞阻力不能再發(fā)生彈跳為止。待有桿腔氣體由A排空后,活塞便下行至終點。
第五階段:耗能段?;钊滦兄两K點后,如換向閥不及時復(fù)位,則蓄氣-無桿腔內(nèi)會繼續(xù)充氣直至達到氣源壓力。再復(fù)位時,充入的這部分氣體又需全部排掉??梢娺@種充氣不能作用有功,故稱之為耗能段。實際使用時應(yīng)避免此段(令換向閥及時換向返回復(fù)位段)。
對內(nèi)徑D=90mm的氣缸,在氣源壓力0.65MPa下進行實驗,所得沖擊氣缸性曲線見圖42.2-12。上述分析基本與性曲線相符。
對沖擊段的分析可以看出,很大的運動加速使活塞產(chǎn)生很大的運動速度,但由于必須克服有桿腔不斷增加的背壓力及摩擦力,則活塞速度又要減慢,因此,在某個沖程處,運動速度必達zui大值,此時的沖擊能也達zui大值。各種沖擊作業(yè)應(yīng)在這個沖程附近進行(參見圖42.2-11c)。
沖擊氣缸在實際工作時,錘頭模具撞擊工件作完功,一般就借助行程開關(guān)發(fā)出信號使換向閥復(fù)位換向,缸即從沖擊段直接轉(zhuǎn)為復(fù)位段。這種狀態(tài)可認為不存在彈跳段和耗能段。
2)快排型沖擊氣缸由上述普通型沖擊氣缸原理可見,其一部分能量(有時是較大部分能量)被消耗于克服背壓(即p2)做功,因而沖擊能沒有充分利用。假如沖擊一開始,就讓有桿腔氣體全排空,即使有桿腔壓力降至大氣壓力,則沖擊過程中,可節(jié)省大量的能量,而使沖擊氣缸發(fā)揮更大的作用,輸出更大的沖擊能。這種在沖擊過程中,有桿腔壓力接近于大氣壓力的沖擊氣缸,稱為快排型沖擊氣缸。其結(jié)構(gòu)見圖42.2-13a。
快排型沖擊氣缸是在普通型沖擊氣缸的下部增加了“快排機構(gòu)”構(gòu)成??炫艡C構(gòu)是由快排導(dǎo)向蓋1、快排缸體4、快排活塞3、密封膠墊2等零件組成。
快排型沖擊氣缸的氣控回路見圖42.2-13b。接通氣源,通過閥F1同時向K1、K3充氣,K2通大氣。閥F1輸出口A用直管與K1孔連通,而用彎管與K3孔連通,彎管氣阻大于直管氣阻。這樣,壓縮空氣先經(jīng)K1使快排活塞3推到上邊,由快排活塞3與密封膠墊2一起切斷有桿腔與排氣口T的通道。然后經(jīng)K3孔向有桿腔進氣,蓄氣一無桿腔氣體經(jīng)K4孔通過閥F2排氣,則活塞上移。當(dāng)活塞封住中蓋噴氣口時,裝在錘頭上的壓塊觸動推桿6,切換閥F3,發(fā)出信號控制閥F2使之切換,這樣氣源便經(jīng)閥F2和K4孔向蓄氣腔內(nèi)充氣,一直充至氣源壓力。
圖42.2-12 沖擊氣缸性曲線
圖42.2-13 快排型沖擊氣缸結(jié)構(gòu)及控制回路
a)結(jié)構(gòu)圖;b)控制回路
1—快排導(dǎo)向蓋;2—密封膠墊;3—快排活塞;4—快排缸體;5—中蓋
T— 方孔;C—環(huán)形空間; 6—推桿;7—氣阻;8—氣容
沖擊工作開始時,使閥F1切換,則K2進氣,K1和K3排氣,快排活塞下移,有桿腔的壓縮空氣便通過快排導(dǎo)向蓋1上的多個圓孔(8個),再經(jīng)過快排缸體4上的多個方孔T(10余個)及K3直接排至大氣中。因為上述多個圓孔和方孔的通流面積遠遠大于K3的通流面積,所以有桿腔的壓力可以在極短的時間內(nèi)降低到接近于大氣壓力。當(dāng)降到一定壓力時,活塞便開始下移。錘頭上壓塊便離開行程閥F3的推桿6,閥3在彈簧的作用下復(fù)位。由于接有氣阻7和氣容8,閥3雖然復(fù)位,但F2卻延時復(fù)位,這就保證了蓄氣缸腔內(nèi)的壓縮空氣用來完成使活塞迅速向下沖擊的工作。否則,若F3復(fù)位,F(xiàn)2同時復(fù)位的話,蓄氣缸腔內(nèi)壓縮空氣就會在錘頭沒有運動到行程終點之前已經(jīng)通過K4孔和閥F2排氣了,所以當(dāng)錘頭開始沖擊后,F(xiàn)2的復(fù)位動作需延時幾十毫秒。因所需延時時間不長,沖擊缸沖擊時間又很短,往往不用氣阻、氣容也可以,只要閥F2的換向時間比沖擊時間長就可以了。
在活塞向下沖擊的過程中,由于有桿腔氣體能充分地被排空,故不存在普通型沖擊氣缸有桿腔出現(xiàn)的較大背壓,因而快排型沖擊氣缸的沖擊能是同尺寸的普通型沖擊氣缸沖擊能的3~4倍。
(2)數(shù)字氣缸
如圖42.2-14所示,它由活塞1、缸體2、活塞桿3等件組成。活塞的右端有T字頭,活塞的左端有凹形孔,后面活塞的T字頭裝入前面活塞的凹形孔內(nèi),由于缸體的限制,T字頭只能在凹形孔內(nèi)沿缸軸向運動,而兩者不能脫開,若干活塞如此順序串聯(lián)置于缸體內(nèi),T字頭在凹形孔中左右可移動的范圍就是此活塞的行程量。不同的進氣孔A1~Ai(可能是A1,或是A1和A2,或A1、A2和A3,還可能是A1和A3,或A2和A3等等)輸入壓縮空氣(0.4~0.8MPa)時,相應(yīng)的活塞就會向右移動,每個活塞的向右移動都可推動活塞桿3向右移動,因此,活塞桿3每次向右移動的總距離等于各個活塞行程量的總和。這里B孔始終與低壓氣源相通(0.05~0.1MPa),當(dāng)A1~Ai孔排氣時,在低壓氣的作用下,活塞會自動退回原位。各活塞的行程大小,可根據(jù)需要的總行程s按幾何級數(shù)由小到大排列選取。設(shè)s=35mm,采用3個活塞,則各活塞的行程分別取α1=5mm;α2=10mm;α3=20mm。如s=31.5mm,可用6個活塞,則α1、α2、α3……α6分別設(shè)計為0.5、1、2、4、8、16mm,由這些數(shù)值組合起來,就可在0.5~31.5mm范圍內(nèi)得到0.5mm整數(shù)倍的任意輸出位移量。而這里的α1、α2、α3……αi可以根據(jù)需要設(shè)計成各種不同數(shù)列,就可以得到各種所需數(shù)值的行程量。
(3)回轉(zhuǎn)氣缸
如圖42.2-1所示,主要由導(dǎo)氣頭、缸體、活塞、活塞桿組成。這種氣缸的缸體3連同缸蓋6及導(dǎo)氣頭芯10被其他動力(如車床主軸)攜帶回轉(zhuǎn),活塞4及活塞桿1只能作往復(fù)直線運動,導(dǎo)氣頭體9外接管路,固定不動。
固轉(zhuǎn)氣缸的結(jié)構(gòu)如圖42.2-15b所示。為增大其輸出力采用兩個活塞串聯(lián)在一根活塞桿上,這樣其輸出力比單活塞也增大約一倍,且可減小氣缸尺寸,導(dǎo)氣頭體與導(dǎo)氣頭芯因需相對轉(zhuǎn)動,裝有滾動軸承,并以研配間隙密封,應(yīng)設(shè)油杯潤滑以減少摩擦,避免燒損或卡死。
回轉(zhuǎn)氣缸主要用于機床夾具和線材卷曲等裝置上。
(4)撓性氣缸
撓性氣缸是以撓性軟管作為缸筒的氣缸。常用撓性氣缸有兩種。一種是普通撓性氣缸見圖42.2-16,由活塞、活塞桿及撓性軟管缸筒組成。一般都是單作用活塞氣缸,活塞的回程靠其他外力。其點是安裝空間小,行程可較長。
圖42.2-14 數(shù)字氣缸
1—活塞;2—缸體;3—活塞桿
圖42.2-15 回轉(zhuǎn)氣缸
a)原理圖;b)結(jié)構(gòu)圖
1—活塞桿;2、5—密封圈;3—缸體;4—活塞;6—缸蓋;7、8—軸承
9—導(dǎo)氣頭體;10—導(dǎo)氣頭芯;11—中蓋;12—螺栓
圖42.2-16 普通撓性氣缸
第二種撓性氣缸是滾子撓性氣缸見圖42.2-17。由夾持滾子代替活塞及活塞桿,夾持滾子設(shè)在撓性缸筒外表面,A端進氣時,左端撓性筒膨脹,B端排氣,缸左端收縮,夾持在缸筒外部的滾子在膨脹端的作用下,向右移動,滾子夾帶動載荷運動??煞Q為撓性筒滾子氣缸。這種氣缸的點是所占空間小,輸出力較小,載荷率較低,可實現(xiàn)雙作用。
圖42.2-17 滾子撓性氣缸
(5)鋼索式氣缸
鋼索式氣缸見圖42.2-18,是以柔軟的、彎曲性大的鋼絲繩代替剛性活塞桿的一種氣缸?;钊c鋼絲繩連在一起,活塞在壓縮空氣推動下往復(fù)運動,鋼絲繩帶動載荷運動,安裝兩個滑輪,可使活塞與載荷的運動方向相反。
這種氣缸的點是可制成行程很長的氣缸,如制成直徑為25mm ,行程為6m左右的氣缸也不困難。鋼索與導(dǎo)向套間易產(chǎn)生泄漏。
圖42.2-18 鋼索式氣缸